반응형

이 글은 Kaggle의 머신러닝 입문 (Intro to Machine Learning) 강의를 번역/정리한 글입니다. 원문은 여기서 찾아보실 수 있습니다.

이전 글은 아래에서 보실 수 있습니다.

파이썬 Pandas로 머신러닝 기초 배워보기 (3/5) https://ruins880.tistory.com/80

 

파이썬 Pandas로 머신러닝 기초 배워보기 (3/5)

이 글은 Kaggle의 머신러닝 입문 (Intro to Machine Learning) 강의를 번역/정리한 글입니다. 원문은 여기서 찾아보실 수 있습니다. 이전 글은 아래에서 보실 수 있습니다. 파이썬 Pandas로 머신러닝 기초 배

ruins880.tistory.com


이전 강의에서는 모델을 만들고 그 품질을 평가해보았습니다. 이번에는 과적합(overfitting)과 저적합(underfitting)의 개념에 대해 배워보겠습니다.

Experimenting with Different Models (여러 모델로 실험해보기)

scitkit-learn 문서를 보면 알 수 있듯이 decision tree 모델에도 엄청나게 많은 옵션이 있습니다. 가장 중요한 옵션은 tree의 깊이를 결정하는 것입니다. 강의 시리즈의 맨 처음에서 기억하실 지 모르겠지만, tree의 깊이란 모델에서 예측을 하기 전에 나뭇가지가 몇 번이나 나눠지는 지입니다. 아래는 비교적 '얕은' tree입니다.

 

실제로는, 가지가 맨 위부터 맨 아래까지 10번 나눠져 있는 tree도 흔합니다. tree가 더 깊어질 수록, 제일 끝에 있는 잎에는 적은 수의 집들이 들어가죠. 만약 tree가 한번만 나눠진다면, 우리의 데이터는 절반으로 나눠져 두개의 그룹이 됩니다. 한번 더 나눠진다면, (위의 그림과 같이) 4개의 그룹이 되고요. 이런 식으로 계속 나눠간다면, 10번 나눠지고 나면 2^10 개의 그룹이 생길 것입니다. 이는 1024개의 잎을 의미합니다.

이렇게 여러 번 나누다 보면, 각 잎에는 아주 적은 수의 집들이 들어가게 될 것이고, 예측을 실제와 같이 정확하게 할 수 있을 것입니다. 하지만, 새로운 데이터가 주어졌을 때에는 예측이 아주 부정확해질 수도 있습니다 (각 그룹(잎)의 예측값은 아주 적은 수의 집값에만 기반하기 때문이죠).

이러한 현상을 과적합(overfitting)이라고 부릅니다. 훈련 데이터(training data)에는 모델이 거의 완벽하게 맞지만, 새로운 데이터에는 예측이 아주 부정확하죠.

반면에, 만약 tree를 아주 얕게 만든다면 그룹의 수가 적어서 각가의 집값의 특징이 잘 나타나지 않게 됩니다. 극단적인 예를 들어보면, 만약 tree가 모든 집들을 두 개 혹은 네 개의 그룹으로만 나눈다면, 그룹 안에서는 여전히 다양한 범위의 집값이 존재할 것입니다. 예측치는 실제 집값과는 거리가 멀 것이며, 이것은 훈련 데이터를 사용한 예측에도 동일합니다. 모델이 중요한 특징이나 패턴을 잡아내지 못하고 훈련 데이터에서조차 예측 정확도가 아주 낮다면 이것을 저적합(underfitting)이라고 부릅니다.

우리는 훈련 데이터로부터 생성해 낸 모델로 새로운 데이터 예측의 정확도를 높이고 싶으므로, 이 과적합과 저적합 사이의 알맞은 위치를 찾아내어야 합니다. 아래의 그래프에서, 빨간 선의 가장 낮은 부분을 의미하죠.


Example (예제)

Tree의 깊이를 조절하는 데에는 몇가지 방법이 있습니다. 그중에서 max_leaf_nodes 옵션이 과적합과 저적합을 조절하는 데에 아주 적절한 방법입니다. 더 많은 leaf node를 허락할 수록, 모델은 위의 그래프의 Overfitting 위치에서 Underfitting 쪽으로 이동합니다. 아래의 코드를 이용해서 MAE 점수를 내고 서로 다른 값을 max_leaf_nodes 에 넣어서 비교를 해볼 수 있습니다.

from sklearn.metrics import mean_absolute_error
from sklearn.tree import DecisionTreeRegressor
def get_mae(max_leaf_nodes, train_X, val_X, train_y, val_y):
model = DecisionTreeRegressor(max_leaf_nodes=max_leaf_nodes, random_state=0)
model.fit(train_X, train_y)
preds_val = model.predict(val_X)
mae = mean_absolute_error(val_y, preds_val)
return(mae)

데이터는 우리가 아까 쓴 코드를 이용해서 train_X, val_X, train_y, val_y 변수에 저장됩니다.

# Data Loading Code Runs At This Point
import pandas as pd
# 데이터를 불러옵니다
melbourne_file_path = '../input/melbourne-housing-snapshot/melb_data.csv'
melbourne_data = pd.read_csv(melbourne_file_path)
# 값이 없는 행을 걸러냅니다
filtered_melbourne_data = melbourne_data.dropna(axis=0)
# 타겟과 feature를 선택합니다
y = filtered_melbourne_data.Price
melbourne_features = ['Rooms', 'Bathroom', 'Landsize', 'BuildingArea', 'YearBuilt', 'Lattitude',
'Longtitude']
X = filtered_melbourne_data[melbourne_features]
from sklearn.model_selection import train_test_split
# 데이터를 training data와 validation data로 나눕니다.
train_X, val_X, train_y, val_y = train_test_split(X, y,random_state = 0)

for 반복문을 이용하여, max_leaf_nodes 값의 변화에 따라 모델의 정확도를 비교해볼 수 있습니다.

위의 결과에서는 500개가 가장 최적의 값입니다.


Conclusion (결론)

모델은 두가지 문제점이 있을 수 있습니다

과적합(Overfitting): 앞으로는 절대 일어나지 않을 잘못된 패턴을 잡아내어서 예측을 부정확하게 만듭니다.

저적합(Underfitting): 관련이 있는 패턴을 잡아내지 못해 전반적인 정확도가 떨어집니다.

이제 직접 코드를 짜보겠습니다.


코드 예제 연습은 notebook 환경을 제공하는 Kaggle에서 직접해보시는 것을 추천합니다. 다음의 링크에서 찾으실 수 있습니다: https://www.kaggle.com/kernels/fork/1259126

 

Kaggle Code

 

www.kaggle.com

이번 예제에서는 더나은 예측을 위해 tree의 크기를 조절해볼텐데, 다음의 코드는 이전에 우리가 직접 만든 모델을 다시 만들어줍니다.

Exercises (예제)

MAE를 계산해주는 get_mae 펑션을 직접짤 수도 있지만, 일단 여기서는 미리 제공하겠습니다.

Step 1: Compare Different Tree Sizes

아래의 값들을 max_leaf_nodes로 실행하는 반복문을 만드세요. 각각의 max_leaf_nodes 값에 대응하는 get_mae 펑션을 호출하세요. 가장 정확한 예측을 하는 모델을 선택하기 위해 max_leaf_nodes 값을 저장하세요.

Step 2: Fit Model Using All Data (모든 데이터를 이용하여 모델을 적합시키기)

이제 가장 알맞은 tree의 크기를 알았으니, 모델을 더욱 정확하게 하기 위해 알아낸 크기와 우리가 가진 모든 데이터를 이용하여 모델의 정확도를 높여봅시다. 즉, validation data를 따로 떼어놓지 않아도 됩니다.

지금까지 모델을 만들어서 그 예측도를 향상시키는 방법을 배워보았습니다. 하지만 우리가 사용한 모델은 현대 머신러닝 기준으로 딱히 정확하지 않은 Decision Tree model 입니다. 다음 단계에서는 우리의 모델을 더욱더 향상시키기 위해 Random Forests 라는 기법을 써보도록 하겠습니다.

다음 글: 파이썬 Pandas로 머신러닝 기초 배워보기 (5/5): https://ruins880.tistory.com/82

 

파이썬 Pandas로 머신러닝 기초 배워보기 (5/5)

이 글은 Kaggle의 머신러닝 입문 (Intro to Machine Learning) 강의를 번역/정리한 글입니다. 원문은 여기서 찾아보실 수 있습니다. 이전 글은 아래에서 보실 수 있습니다. 파이썬 Pandas로 머신러닝 기초 배

ruins880.tistory.com

 

 

728x90
반응형
Posted by Gun들지마
반응형

이 글은 Kaggle의 머신러닝 입문 (Intro to Machine Learning) 강의를 번역/정리한 글입니다. 원문은 여기서 찾아보실 수 있습니다.

이전 글은 아래에서 보실 수 있습니다.

파이썬 Pandas로 머신러닝 기초 배워보기 (2/5): https://ruins880.tistory.com/79

 

파이썬 Pandas로 머신러닝 기초 배워보기 (2/5)

이 글은 Kaggle의 머신러닝 입문 (Intro to Machine Learning) 강의를 번역/정리한 글입니다. 원문은 여기서 찾아보실 수 있습니다. ​이전 글은 아래에서 보실 수 있습니다. 파이썬 Pandas로 머신러닝 기초

ruins880.tistory.com


이전 과제에서는 모델을 직접 만들어 보았습니다. 하지만, 우리가 만든 모델은 얼마나 정확할까요? 이번 시간에는 모델의 적합성 및 정확도를 측정하고 그것을 높이는 방법을 알아보겠습니다.

What is Model Validation (모델 확인이 뭐죠)

우리가 만드는 모델은 전부 평가가 필요합니다. 대부분의 경우에 이 평가의 척도는 모델이 예측하는 결과의 정확성에 달려있죠. 하지만 많은 사람들이 모델의 예측 정확도를 측정할 때에 모델을 만들 때 썼던 기존의 데이터를 이용하버리는 실수를 저지릅니다.

일단, 모델의 품질을 우리가 알아볼 수 있도록 정리해보겠습니다. 우리가 1만개의 집의 실제 가격과 예측된 가격을 비교하게 된다면, 정확한 예측가격과 그렇지 않은 것들이 섞여있을 것입니다. 1만개의 가격을 일일이 확인하는 것은 의미가 없을 것이므로, 우리는 이것을 하나의 수치로 종합할 방법이 필요합니다. 여기에는 여러가지 방법이 있지만, 지금은 절대오차평균(Mean Absolute Error; MAE)이라는 값을 이용하겠습니다. 이는 말 그대로, 각 오차의 절대치의 평균을 구한 값입니다. 각 모델의 오차는 error = actual - predicted 로 구할 수 있습니다. 그 오차들을 모두 양수로 전환해 평균을 낸 값입니다. 일단, MAE를 구하려면 모델이 있어야하니 모델부터 만들어 보겠습니다.

위의 코드로 모델을 만든 후, 절대오차평균은 다음과 같이 구합니다.

The Problem with "In-Sample" Scores ("샘플 내" 값을 사용하는 경우)

우리가 방금 계산한 값은 "샘플 내" 수치라고 부를 수 있습니다. 우리는 하나의 "샘플"을 모델을 만드는 데와 그것을 평가하는 데 둘 다 사용했죠. 하지만 이것은 좋지 않은 습관입니다.

예를 들어, 실제 부동산 시장에서는 현관문의 색깔이 집값에 영향을 미치지 않습니다. 하지만 모델을 만드는 샘플 데이터에서 초록색 문을 가진 집들이 전부 비싸다면, 그 결과 모델은 초록색 문이 있는 집의 가격을 항상 비싸게 예측할 것입니다. 이러한 패턴이 샘플 데이터에서 나왔기 때문에, 샘플 데이터로 모델의 정확도를 측정하면, 그 모델은 정확하게 보일 수 밖에 없습니다. 하지만, 샘플 데이터가 아닌 새로운 데이터를 모델에 대입했을 때에, 실제로 그 모델은 정확하지 않겠죠.

그러무로 우리는 모델의 정확도를 측정할 때에, 샘플 데이터가 아닌 새로운 데이터를 사용해야만 합니다. 이렇게 하기 위한 가장 쉬운 방법은 모델을 만들 때에 몇몇의 데이터를 제외하고, 그 제외된 데이터를 나중에 모델의 정확도를 테스트할 때에 쓰는 것입니다. 이렇게 제외된 데이터를 확인 데이터 (validation data)라고 부릅니다.

Coding It (코딩해보자)

scikit-learn 라이브러리에는 train_test_split 펑션이 있어서 데이터를 두 그룹으로 나눌 수 있습니다. 이 펑션을 이용하여 한 그룹은 모델을 만드는 데에 쓰고, 다른 그룹은 MAE를 계산하는 데 써보겠습니다.

 

위에서 샘플 내 값을 이용한 오차평균이 $434.72 였다면, 아래에 계산한 오차평균은 $261,425이 나왔습니다. 실제로 모델의 오차 평균이 $250,000 이상이라면 한참 문제가 있는 거겠죠. 참고로 데이터 내의 집값 평균은 $1,100,000이었으니, 오차가 집값의 거의 1/4 수준이 되는 것입니다.

다음은 직접 코딩 예제를 실행해 보겠습니다.


Kaggle은 따로 컴퓨터에 설치할 필요없이 웹상에서 파이썬 코드를 작성하고 실행시킬 수 있는 "notebook" 환경을 이용합니다. notebook 환경이 처음이신 분은 다음의 짧은 동영상을 보시면 됩니다: https://www.youtube.com/watch?v=4C2qMnaIKL4

지난 예제에서는 모델을 직접 만들어 보았죠. 거기에 이어서 하기 위해, 아래의 예제를 실행시켜 주세요.

Exercises

이번 예제에서는 지난 번에 직접 만든 모델의 정확도를 테스트해 보겠습니다. 예제는 아래의 링크에서 직접해보실 수 있습니다. Kaggle 계정을 생성하시면 더 도움이 될 수 있습니다. https://www.kaggle.com/kernels/fork/1259097

 

Kaggle Code

 

www.kaggle.com

Step 1: Split Your Data (데이터 반으로 나누기)

train_test_split 펑션을 사용해서 데이터를 나누세요.

Step 2: Specify and Fit the Model (모델을 지정하고 피팅하기)

DecisionTreeRegressor 모델을 만들고 알맞은 데이터를 피팅하세요. random_state는 1로 지정해주세요.

Step 3: Make Predictions with Validation Data (확인 데이터로 예측하기)

이제 실제 값과 예측 값을 살펴보겠습니다.

출력값의 첫줄은 모델이 예측한 값이며, 둘째 줄은 실제 집값입니다. 저 위에서 샘플 내 값으로 예측할 때랑 결과가 많이 달라졌나요? 이것은 아주 중요한 개념입니다.

Step 4: Calculate the Mean Absolute Error in Validation Data (절대오차평균 계산하기)

계산한 값이 괜찮은가요? 절대적으로 어떤 수치가 좋은 수치라는 것은 정해진 것이 아닙니다. 하지만 다음 단계를 계속해 나가면서 우리는 저 값을 줄일 것입니다.

이어지는 글: 파이썬 Pandas로 머신러닝 기초 배워보기 (4/5): https://ruins880.tistory.com/81

 

파이썬 Pandas로 머신러닝 기초 배워보기 (4/5)

이 글은 Kaggle의 머신러닝 입문 (Intro to Machine Learning) 강의를 번역/정리한 글입니다. 원문은 여기​서 찾아보실 수 있습니다. ​이전 글은 아래에서 보실 수 있습니다. 파이썬 Pandas로 머신러닝 기

ruins880.tistory.com

 

728x90
반응형
Posted by Gun들지마
반응형

이 글은 Kaggle의 머신러닝 입문 (Intro to Machine Learning) 강의를 번역/정리한 글입니다. 원문은 여기서 찾아보실 수 있습니다.

​이전 글은 아래에서 보실 수 있습니다.

파이썬 Pandas로 머신러닝 기초 배워보기 (1/5): https://ruins880.tistory.com/78

 

파이썬 Pandas로 머신러닝 기초 배워보기 (1/5)

이 글은 Kaggle의 머신러닝 입문 (Intro to Machine Learning) 강의를 번역/정리한 글입니다. 원문은 여기서 찾아보실 수 있습니다. Introduction 먼저, 머신러닝에서 모델이 어떻게 사용되는지 부터 시작하겠

ruins880.tistory.com


Selecting Data for Modeling

지금 우리가 가진 데이터는 너무 변수가 많습니다. 이렇게 많은 양의 데이터에서 이해가 가능한 정보를 빼내려면 어떻게 해야할까요? 일단, 느낌으로 변수를 몇 개 골라보겠습니다. 나중에는 통계적 방법으로 변수를 선택하는 것을 배우게 될 것입니다.

우리 데이터에서 변수를, 혹은 열을 고르려면 모든 열(column)들을 봐야겠죠. 다음의 코드로 DataFrame에서 모든 column을 볼 수 있습니다.

import pandas as pd
melbourne_file_path = '../input/melbourne-housing-snapshot/melb_data.csv'
melbourne_data = pd.read_csv(melbourne_file_path)
melbourne_data.columns
# 멜버른 데이터에는 비어있는 값들이 있습니다 (어떤 집들에는 몇몇 변수들이 기록이 되어있지 않죠).
# 나중에 이러한 빠진 값들을 다루는 방법을 배울 것입니다.
# 아이오와 데이터에서 우리가 사용하는 열에는 빠진 값들이 없습니다.
# 그러므로 지금은 가장 간단하게, 값이 없는 집들을 애초에 빼버리겠습니다.
# 지금은 너무 신경쓰지 않아도 되지만, 코드는 다음과 같습니다:
# dropna 명령어는 비어있는 줄을 빼버립니다 (na는 "not available"이라고 생각하세요)
melbourne_data = melbourne_data.dropna(axis=0)

데이터의 일부분을 선택하는 데에는 여러가지 방법이 있습니다. Pandas 강의에 더 자세히 나와있지만, 지금은 두가지 방법을 사용하겠습니다.

1. Dot notation: "Prediction target"을 선택하는 데에 이용

DataFrame에서는 dot-notation을 이용하여 변수를 선택할 수 있습니다. 선택된 하나의 열은 Series 형태로 저장됩니다. 우리가 예측하고 싶은 변수인 prediction target을 이 방법을 사용하여 선택하고 y 변수에 저장해보겠습니다. 집값을 저장하는 코드는 다음과 같습니다:

y = melbourne_data.Price

2. Selecting with a column list: "feature"를 선택하는 데에 이용

모델에 입력하여서 나중에 예측하는 데에 사용되는 변수열들은 "features"라고 부릅니다. 우리 예제의 경우에는 이러한 features를 사용하여 prediction target인 집값을 결정하는 데 쓸 것입니다. 종종 우리가 가진 모든 변수들을 예측모델에 쓰기도 하지만, 어떤 경우에는 몇몇의 변수들만 선택하는 것이 더 나을 때도 있습니다.

지금은 몇 개의 중요한 feature들만 선택해 보겠습니다. 여러개의 feature를 선택하는 방법은 대괄호를 쓰는 것입니다. 각각의 feature 이름은 아래의 예제처럼 큰따옴표를 이용하여야 합니다.

melbourne_features = ['Rooms', 'Bathroom', 'Landsize', 'Lattitude', 'Longtitude']
X = melbourne_data[melbourne_features]

X에 저장된 데이터를 describe와 head 명령어로 살펴보겠습니다.

X.describe()
X.head()

이렇게 시각적으로 데이터를 살펴보는 과정은 아주 중요합니다. 데이터에서 어떤 것을 발견할 지 모르거든요.


Building Your Model (모델 만들어 보기)

모델을 만들기 위해 scikit-learn 라이브러리를 사용하겠습니다. 예제 코드에 나와있듯이, 실제 코딩에서는 sklearn으로 씁니다. Scikit-learn 라이브러리는 DataFrame 유형의 자료를 가지고 모델을 만드는 데에 가장 널리 쓰이는 라이브러리 입니다. 모델을 만들고 이용하는 과정은 다음과 같습니다:

​* Define (정의하기): 어떤 유형의 모델을 만들 것인가요? 처음에 배운 Decision Tree, 혹은 다른 새로운 모델?

* Fit (적합시키기): 제공된 데이터에서 패턴을 찾습니다. 가장 핵심인 단계입니다.

* Predict (예측하기): 말 그대롭니다.

* Evaluate (평가하기): 모델이 예측한 결과가 얼마나 정확한지 알아봅니다.

다음은 scikit-learn 라이브러리를 이용하여 모델을 정의하고 우리의 데이터에 적합시키는 예제 코드입니다.

from sklearn.tree import DecisionTreeRegressor
# 모델을 정의합니다. 매번 똑같은 결과를 얻기 위해 random_state에 숫자를 지정합니다.
melbourne_model = DecisionTreeRegressor(random_state=1)
# 모델을 데이터에 적합시킵니다.
melbourne_model.fit(X, y)

머신러닝에 쓰이는 많은 모델들은 그 적합과정에서 어느정도 무작위성(randomness)을 포함합니다. random_state로 숫자를 지정하면, 실행할 때마다 같은 결과를 가지도록 해줍니다. 이것은 좋은 습관이죠. 하지만 어떤 수를 지정하든 모델 자체에는 의미있는 변화를 주지는 않습니다.

실제로는, 지금 이미 집값이 나와있는 집 말고, 앞으로 매물이 나오는 집의 집값을 예측하는 것이 우리의 목표입니다. 하지만 지금은, 우리가 가지고 있는 데이터에서 집값이 어떻게 계산되는지 처음 몇 줄의 결과를 보겠습니다.

print("Making predictions for the following 5 houses:")
print(X.head())
print("The predictions are")
print(melbourne_model.predict(X.head()))

다음은 직접 예제를 실행해 보겠습니다.


Kaggle은 따로 컴퓨터에 설치할 필요없이 웹상에서 파이썬 코드를 작성하고 실행시킬 수 있는 "notebook" 환경을 이용합니다. notebook 환경이 처음이신 분은 다음의 짧은 동영상을 보시면 됩니다: https://www.youtube.com/watch?v=4C2qMnaIKL4

지난 예제에서, 다음과 같이 데이터를 불러오고 확인하였습니다. 예제를 이어서 하기 위해 다음 코드를 실행시켜주세요.

Exercises

이번 예제는 직접 간단한 모델을 만들어 보겠습니다. 예제는 아래의 링크에서 직접해보실 수 있습니다. Kaggle 계정을 생성하시면 더 도움이 될 수 있습니다.

https://www.kaggle.com/kernels/fork/1404276

 

Step 1: Specify Prediction Target (예측할 타겟을 지정하기)

Step 2: Create X (X 변수 생성하기)

이제 이름이 X인 DataFrame을 생성하여 예측에 필요한 feature들을 저장할 것입니다.

원래의 데이터에서 일부분만 저장할 것이므로, 일단 X에 들어갈 열 이름들을 리스트로 만들어 보겠습니다. 다음의 변수 이름들을 사용해서 리스트를 만드세요.

* LotArea * YearBuilt * 1stFlrSF * 2ndFlrSF * FullBath * BedroomAbvGr * TotRmsAbvGrd

리스트를 만든 다음, 그것을 사용하여 DataFrame을 만들어 보세요.

Review Data(데이터 확인하기)

모델을 만들기 전, X를 출력하여 괜찮아 보이는지 확인해 봅시다.

Step 3: Specify and Fit Model (모델을 지정하고 적합화 시키기)

DecisionTreeRegressor를 생성하여 iowa_model을 저장하세요. sklearn 라이브러리를 불러오는 것도 잊지마세요. 그런 다음, X에 있는 데이터를 가지고, y에 저장한 모델을 적합화시키세요.

Step 4: Make Predictions (예측하기)

predict 명령어로 X를 사용하여 예측을 해봅시다. 결과는 predictions 변수에 저장하세요.

Think About Your Results (결과에 대하여 생각해보기)

head 명령으를 사용해 예측한 결과와 실제 집값을 비교해봅시다.

728x90
반응형
Posted by Gun들지마
반응형

이 글은 Kaggle의 머신러닝 입문 (Intro to Machine Learning) 강의를 번역/정리한 글입니다. 원문은 여기서 찾아보실 수 있습니다.


Introduction

먼저, 머신러닝에서 모델이 어떻게 사용되는지 부터 시작하겠습니다. 만약 당신이 통계 모델링이나 머신러닝을 공부한 적이 있다면, 처음에는 너무 쉬울 수도 있습니다.

이 강의에서는 다음과 같은 상황에서 모델링을 어떻게 하는지를 배워볼 것 입니다.:

당신의 사촌형은 부동산에 투자해서 많은 돈을 벌었습니다. 그는 당신이 데이터사이언스를 공부하는 것을 알고 사업제안을 하나 했습니다. 사업에 필요한 자본은 사촌형이 제공하고, 당신은 각각의 집이 얼마나 가치가 있는지 결정하는 모델을 만들어야 합니다. 당신은 사촌형에게 그동안은 어떻게 집의 가치를 정했냐고 물어봤지만, 사촌형은 그냥 감으로 결정했다고 합니다. 하지만 사촌형에게 더 자세히 물어보니, 사촌형은 과거에 자신이 본 집값들에 어떠한 패턴이 있고, 그 패턴을 이용해 새로운 주택의 가격을 결정하고 있었습니다.

머신러닝도 똑같은 방법으로 작동합니다. 먼저 Decision Tree라는 모델링 기법을 사용해 보겠습니다. 더 정확한 결과를 보여주는 복잡한 모델들이 있긴하지만, Decision tree는 이해하기 쉽고, 몇몇 다른 좋은 모델의 기반이 되기도 합니다.

​가장 간단한 Decision tree를 한번 보겠습니다.

위 모델은 집들을 침실이 두개 이상인지 아닌지의 두가지만으로 분류합니다. 여기서 결정된 가격 ($178000, $188000)은 그 분류항목에 속했던 모든 집들의 평균 가격으로 결정했습니다. 데이터를 이용해 집들을 두가지의 그룹으로 나누고, 그 다음 각각의 그룹에서 예상 가격을 결정합니다. 이렇게 데이터로부터 패턴을 잡아내는 것을 fitting 혹은 training이라고 합니다. 그리고 모델을 결정하기 위해 사용한 데이터는 training data라고 부릅니다. 모델이 어떻게 결정되는 지에 관한 자세한 사항들은 추후에 더 알아보기로 하고, 이제 우리는 새로운 데이터들을 이용해 다른 집들의 가격을 예측할 수 있습니다.

Improving the decision tree

다음 중 어느 Decision tree가 더 좋은 결과를 예측할 수 있을까요?

왼쪽의 Decision tree가 아마 더 말이 될 것입니다. 침실이 더 많은 집이 대체로 가격이 더 높기 때문이죠. 하지만 이 모델은 치명적인 단점이 있습니다. 그것은 침실 갯수 이외에 집값에 영향을 미치는 요인, 즉 화장실 갯수, 집 평수, 위치 등을 전혀 고려하지 않았기 때문입니다.

각 주택의 특징을 파악하여 Decision tree의 길을 따라가다보면 집값을 예측할 수 있습니다. 예측한 집의 가격은 트리의 가장 바닥에 있고, 예측을 가능하게 해주는 그 부분을 leaf라고 부릅니다.

다음은 실제 데이터를 관찰해 보겠습니다.


Using Pandas to Get Familiar With Your Data

(판다스를 이용하여 데이터에 익숙해지기)

모든 머신러닝 프로젝트의 첫 단계는 데이터에 익숙해지는 거십니다. 우리는 Pandas 라이브러리를 이용해보겠습니다. Pandas는 데이터 과학자들이 데이터를 조사하고 처리하는 데에 쓰는 도구입니다. 이 라이브러리를 다음과 같이 불러올 수 있습니다.

import pandas as pd

Pandas 라이브러리에서 가장 중요한 부분은 DataFrame입니다. 이 DataFrame에는 우리가 표로 알고있는 데이터를 저장할 수 있습니다. 엑셀의 시트나 SQL의 테이블과 비슷합니다. Pandas는 이러한 유형의 데이터로 우리가 원하는 대부분의 작업을 가능하게 만들어 줍니다. 예를 들어서 호주 멜버른의 주택 가격에 관한 데이터를 보겠습니다.

데이터를 읽어들여서 그 내용을 출력하는 명령어는 다음과 같습니다.

# 사용의 편의를 위해, 읽어들일 파일의 경로를 변수에 저장합니다.
melbourne_file_path = '../input/melbourne-housing-snapshot/melb_data.csv'
# 데이터를 읽어들여 melbourne_data 라는 변수에 DataFrame 형식으로 저장합니다.
melbourne_data = pd.read_csv(melbourne_file_path)
# 데이터의 개요를 출력합니다.
melbourne_data.describe()
 

다음은 직접 예제를 실행해 보겠습니다.


Kaggle은 따로 컴퓨터에 설치할 필요없이 웹상에서 파이썬 코드를 작성하고 실행시킬 수 있는 "notebook" 환경을 이용합니다. notebook 환경이 처음이신 분은 다음의 짧은 동영상을 보시면 됩니다:

https://www.youtube.com/watch?v=4C2qMnaIKL4


 

Exercise: Explore Your Data

이번 예제는 데이터를 DataFrame 형식으로 불러들여, 우리가 어떤한 데이터를 가지고 있는지 살펴보는 것입니다. 예제는 아래의 링크에서 직접해보실 수 있습니다. Kaggle 계정을 생성하시면 더 도움이 될 수 있습니다.

https://www.kaggle.com/kernels/fork/1258954

 

Kaggle Code

 

www.kaggle.com

STEP 1: 데이터 불러오기

STEP 2: 데이터 살펴보기

생각해 볼 점

예제에서 살펴봤듯이, 우리 데이터에서 가장 최근에 지은 집은 2010년에 지어졌습니다. 여기에는 두가지 가능성이 있습니다.

1. 2010년 이후로 새 집을 전혀 짓지 않았다.

2. 데이터가 작성된 일시가 아주 예전이라, 최근의 데이터는 반영이 되어있지 않다.

만약 그 이유가 1번이라면, 우리는 이 데이터를 신뢰할 수 있을까요? 만약 이유가 2번이라면 어떨까요? 데이터를 좀더 자세히 들여다보면 이유가 1번인지 2번인지 알 수 있을까요?

다음은 머신러닝 모델을 직접 만들어보겠습니다.

파이썬 Pandas로 머신러닝 기초 배워보기 (2/5): https://ruins880.tistory.com/79

 

파이썬 Pandas로 머신러닝 기초 배워보기 (2/5)

이 글은 Kaggle의 머신러닝 입문 (Intro to Machine Learning) 강의를 번역/정리한 글입니다. 원문은 여기서 찾아보실 수 있습니다. ​이전 글은 아래에서 보실 수 있습니다. 파이썬 Pandas로 머신러닝 기초

ruins880.tistory.com

 

728x90
반응형
Posted by Gun들지마
반응형

Part 1에 이은 Part 2입니다. Part 3까지 있긴한데 블로그에 올릴지는 잘 모르겠습니다.

설명이 필요하시거나 질문이 있으시면 언제든지 연락주세요

 

728x90
반응형
Posted by Gun들지마